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Abstract

Recent advances in neural rendering have shown that, albeit
slow, implicit compact models can learn a scene’s geome-
tries and view-dependent appearances from multiple views.
To maintain such a small memory footprint but achieve faster
inference times, recent works have adopted ‘sampler’ net-
works that adaptively sample a small subset of points along
each ray in the implicit neural radiance fields. Although these
methods achieve up to a 10× reduction in rendering time,
they still suffer from considerable quality degradation com-
pared to the vanilla NeRF. In contrast, we propose ProNeRF,
which provides an optimal trade-off between memory foot-
print (similar to NeRF), speed (faster than HyperReel), and
quality (better than K-Planes). ProNeRF is equipped with
a novel projection-aware sampling (PAS) network together
with a new training strategy for ray exploration and exploita-
tion, allowing for efficient fine-grained particle sampling. Our
ProNeRF yields state-of-the-art metrics, being 15-23× faster
with 0.65dB higher PSNR than NeRF and yielding 0.95dB
higher PSNR than the best published sampler-based method,
HyperReel. Our exploration and exploitation training strat-
egy allows ProNeRF to learn the full scenes’ color and den-
sity distributions while also learning efficient ray sampling
focused on the highest-density regions. We provide exten-
sive experimental results that support the effectiveness of
our method on the widely adopted forward-facing and 360
datasets, LLFF and Blender, respectively.

1 Introduction
Neural radiance fields (NeRFs) (Mildenhall et al. 2020) have
gained significant attention in the computer vision commu-
nity due to their greater ability to compactly represent com-
plex scenes’ 3D geometries and view-dependent specular-
ity, in comparison with other implicit representations (Flynn
et al. 2019; Sitzmann et al. 2020). The efficacy of NeRFs
can be attributed to several key features such as: (i) the vol-
umetric rendering technique (Drebin, Carpenter, and Han-
rahan 1988), which aggregates estimated RGB-density val-
ues along rendering rays, (ii) their implicit representation by
a multi-layer perception (MLP) network that incorporates
positional encoding (Mildenhall et al. 2020), and (iii) their
coarse-to-fine rendering strategy that enables dense fine-
grained ray sampling for high-quality rendering.

*These authors contributed equally.

Figure 1: Performance trade-off of neural rendering (mem-
ory, speed, quality) on the LLFF dataset.

Although NeRFs offer a compact representation of 3D
geometry and view-dependent effects, there is still signifi-
cant room for improvement in rendering quality and infer-
ence times. To speed up the rendering times, recent trends
have explored caching diffuse color estimation into an ex-
plicit voxel-based structure (Yu et al. 2021a; Hedman et al.
2021; Garbin et al. 2021; Hu et al. 2022) or leveraging tex-
ture features stored in an explicit representation such as hash
girds (Müller et al. 2022), meshes (Chen et al. 2023), or 3D
Gaussians (Kerbl et al. 2023). While these methods achieve
SOTA results on object-centric 360 datasets, they underper-
form for the forward-facing scene cases and require consid-
erably larger memory footprints than NeRF.

In a different line of work, the prior literature of (Neff
et al. 2021; Piala and Clark 2021; Lin et al. 2022; Kurz et al.
2022; Attal et al. 2023) has proposed training single-pass
lightweight “sampler” networks, aimed to reduce the num-
ber of ray samples required for volumetric rendering. Al-
though fast and memory compact, previous sampler-based
methods often fall short in rendering quality compared to
the computationally expensive vanilla NeRF.

In contrast, our proposed method with a Projection-Aware
Sampling (PAS) network and an exploration-exploitation
training strategy, denoted as “ProNeRF,” greatly reduces the
inference times while simultaneously achieving superior im-
age quality and more details than the current high-quality
methods (Chen et al. 2022; Sara Fridovich-Keil and Gi-
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acomo Meanti et al. 2023). In conjunction with its small
memory footprint (as small as NeRF), our ProNeRF yields
the best performance profiling (memory, speed, quality)
trade-off. Our main contributions are as follows1:
• Faster rendering times. Our ProNeRF leverages multi-

view color-to-ray projections to yield a few precise 3D
query points, allowing up to 23× faster inference times
than vanilla NeRF under a similar memory footprint.

• Higher rendering quality. Our proposed PAS and
exploration-exploitation training strategy allow for sparse
fine-grained ray sampling in an end-to-end manner, yield-
ing rendered images with improved quality metrics com-
pared to the implicit baseline NeRF.

• Comprehensive experimental validation. The robust-
ness of ProNeRF is extensively evaluated on forward-
facing and 360 object-centric multi-view datasets. Specif-
ically, in the context of forward-facing scenes, ProNeRF
establishes SOTA renders, outperforming implicit and ex-
plicit radiance fields, including NeRF, TensoRF, and K-
Planes with a considerably more optimal performance
profile in terms of memory, speed, and quality.

2 Related Work
The most relevant works concerning our proposed method
focus on maintaining the compactness of implicit NeRFs
while reducing the rendering times by learning sampling
networks for efficient ray querying.

Nevertheless, other works leverage data structures for
baking radiance fields, that is, caching diffuse color and
latent view-dependent features from a pre-trained NeRF
to accelerate the rendering pipelines (as in SNeRG (Hed-
man et al. 2021)). Similarly, Yu et al. (2021a) proposed
Plenoctrees to store spatial densities and spherical harmon-
ics (SH) coefficients for fast rendering. Subsequently, to re-
duce the redundant computation in empty space, Plenoxels
(Fridovich-Keil et al. 2022) learns a sparse voxel grid of SH
coefficients. On the other hand, Efficient-NeRF (Hu et al.
2022) presents an innovative caching representation referred
to as “NeRF-tree,” enhancing caching efficiency and render-
ing performance. However, these approaches require a pre-
trained NeRF and a considerably larger memory footprint to
store their corresponding scene representations.

Explicit data structures have also been used for storing la-
tent textures in explicit texture radiance fields to speed up
the training and inference times. Particularly, INGP (Müller
et al. 2022) proposes quickly estimating the radiance val-
ues by interpolating latent features stored in multi-scaled
hash grids. Drawing inspiration from tensorial decomposi-
tion, in TensoRF, Chen et al. (2022) factorize the scene’s
radiance field into multiple low-rank latent tensor compo-
nents. Following a similar decomposition principle, Sara
Fridovich-Keil and Giacomo Meanti et al. (2023) introduced
K-Planes for multi-plane decomposition of 3D scenes. Re-
cently, MobileNeRF (Chen et al. 2023) and 3DGS (Kerbl
et al. 2023) concurrently propose merging the rasterization
process with explicit meshes or 3D Gaussians for real-time

1Visit our project website at https://kaist-viclab.github.io/
pronerf-site/

rendering. Similar to the baked radiance fields, MobileN-
eRF and 3DGS demonstrate the capability to achieve incred-
ibly rapid rendering, up to several hundred frames per sec-
ond. However, they demand a considerably elevated mem-
ory footprint, which might be inappropriate in resource-
constrained scenarios where real-time swapping of neural
radiance fields is required, such as streaming, as discussed
by Kurz et al. (2022).

Inspired by the concept proposed in (Levoy and Hanra-
han 1996), recent studies have also explored the learning
of neural light fields which only require a single network
evaluation for each casted ray. Light field networks such as
LFNR (Suhail et al. 2022b) and GPNR (Suhail et al. 2022a)
presently exhibit optimal rendering performance across di-
verse novel view synthesis datasets. Nevertheless, they adopt
expensive computational attention operations for aggregat-
ing multi-view projected features. Additionally, it’s worth
noting that similar to generalizable radiance fields (e.g.,
IBRNet (Wang et al. 2021), or NeuRay (Liu et al. 2022)),
LFNR and GPNR necessitate the storage of all training input
images for epipolar feature projection, leading to increased
memory requirements. Conversely, our method, ProNeRF,
leverages color-to-ray projections while guaranteeing con-
sistent memory footprints by robustly managing a small and
fixed subset of reference views for rendering any novel view
in the target scene. This eliminates the necessity for nearest-
neighbor projection among all available training views in
each novel scene. To balance computational cost and render-
ing quality for neural light fields, RSEN (Attal et al. 2022)
introduces a novel ray parameterization and space subdi-
vision structure of the 3D scenes. On the other hand, R2L
(Wang et al. 2022) distills a compact neural light field with
a pre-trained NeRF. Although R2L achieves better inference
time and quality than RSEN, it necessitates the generation
of numerous pseudo-images from a pre-trained NeRF to per-
form exhaustive training on dense pseudo-data. This process
can extend over days of optimization.

In addition to IBRNet and NeuRay, other generalizable
radiance fields have also been explored in (Yu et al. 2021b;
Li et al. 2021), but are less relevant to our work.

Learning sampling networks. In AutoInt, Lindell, Mar-
tel, and Wetzstein (2021) propose to train anti-derivative net-
works that describe the piece-wise color and density inte-
grals of discrete ray segments whose distances are individ-
ually estimated by a sampler network. In DONeRF (Neff
et al. 2021) and TermiNeRF (Piala and Clark 2021), the
coarse NeRF in vanilla NeRF is replaced with a sampling
network that learns to predict the depth of objects’ surfaces
using either depth ground truth (GT) or dense depths from a
pre-trained NeRF. The requirement of hard-to-obtain dense
depths severely limits DONeRF and TermiNeRF for broader
applications. ENeRF (Lin et al. 2022) learns to estimate the
depth distribution from multi-view images in an end-to-end
manner. In particular, ENeRF adopts cost-volume aggrega-
tion and 3D CNNs to enhance geometry prediction.

Instead of predicting a continuous depth distribution,
AdaNeRF (Kurz et al. 2022) proposes a sampler network
that maps rays to fixed and discretized distance probabilities.
During test, only the samples with the highest probabilities



are fed into the shader (NeRF) network for volumetric ren-
dering. AdaNeRF is trained in a dense-to-sparse multi-stage
manner without needing a pre-trained NeRF. The shader is
first trained with computationally expensive dense sampling
points, where sparsification is later introduced to prune in-
significant samples, and then followed by simultaneous sam-
pling and shading network fine-tuning. In MipNeRF360,
Barron et al. (2022) introduce online distillation to train
the sampling network. Nevertheless, the sampler utilized in
MipNeRF360 remains structured as a radiance field, neces-
sitating a per-point forward pass. Consequently, incorporat-
ing this sampler does not yield substantial improvements in
rendering latency. On the other hand, in the recent work of
HyperReel, Attal et al. (2023) proposed a sampling network
for learning the geometry primitives in grid-based render-
ing models such as TensoRF. HyperReel inherits the fast-
training properties of TensoRF but also yields limited ren-
dering quality with a considerably increased memory foot-
print compared to the vanilla NeRF.

Contrary to the existing literature, we present a sampler-
based method, ProNeRF, that allows for fast neural ren-
dering while substantially outperforming the implicit and
explicit NeRFs quantitatively and qualitatively in recon-
structing forward-facing captured scenes. The main com-
ponents of ProNeRF are a novel PAS network and a new
learning strategy that borrows from the reinforcement learn-
ing concepts of exploration and exploitation. Moreover,
all the previous sampler-based methods require either pre-
trained NeRFs (TermiNeRF), depth GTs (DoNeRF), com-
plex dense-ray sampling and multi-stage training strategies
(AdaNeRF), or large memory footprint (HyperReel). In con-
trast, our proposed method can more effectively learn the
neural rendering in an end-to-end manner from sparse rays,
even with shorter training cycles than NeRF.

3 Proposed Method
Fig. 2 depicts a high-level overview of our ProNeRF, which
is equipped with a projection-aware sampling (PAS) net-
work and a shader network (a.k.a NeRF) for few-point vol-
umetric rendering. ProNeRF performs PAS in a coarse-to-
fine manner. First, for a given target ray, ProNeRF maps the
ray direction and origin into coarse sampling points with the
help of an MLP head (Fθc ). By tracing lines from these sam-
pling points into the camera centers of the reference views
in the training set, ProNeRF performs a color-to-ray projec-
tion which is aggregated to the coarse sampling points and
is processed in a second MLP head (Fθf ). Fθf then outputs
the refined 3D points that are fed into the shading network
(Fθs ) for the further volumetric rendering of the ray color ĉ.
See Section 3.2 for more details.

Training a ProNeRF as depicted in Fig. 2 is not a trivial
task, as the implicit shader needs to learn the full color and
density distributions in the scenes while the PAS network
tries to predict ray points that focus on specific regions with
the highest densities. Previous works, such as DoNERF, Ter-
miNeRF, and AdaNeRF go around this problem at the ex-
pense of requiring depth GTs, pre-trained NeRF models, or
expensive dense sampling. To overcome this issue, we pro-
pose an alternating learning strategy that borrows from rein-

forcement learning which (i) allows the shading network to
explore the scene’s rays and learn the full scene distributions
and (ii) leads the PAS network to exploit the ray samples
with the highest densities. See Section 3.3 for more details.

3.1 PAS-Guided Volumetric Rendering
Volumetric rendering synthesizes images by traversing the
rays that originate in the target view camera center into a
3D volume of color and densities. As noted by Mildenhall
et al. (2020), the continuous volumetric rendering equation
(VRE) of a ray color c(r) can be efficiently approximated
by alpha compositing, which is expressed as:

ĉ(r) =
∑N

i=1

(∏i−1
j=11− αj

)
αici, (1)

where N is the total number of sampling points and αi de-
notes the opacity at the ith sample in ray r as given by

αi = 1− e−σi(ti+1−ti). (2)

Here, σi and ci respectively indicate the density and colors
at the 3D location given by r(ti) for the ith sampling point
on r. A point on r in distance t is r(t) = ro+rdt where ro
and rd are the ray origin and direction, respectively.

In NeRF (Mildenhall et al. 2020), a large number of N
samples along the ray is considered to precisely approxi-
mate the original integral version of the VRE. In contrast,
our objective is to perform high-quality volumetric render-
ing with a smaller number of samples Ns << N . Rendering
a ray with a few samples in our ProNeRF can be possible by
accurately sampling the 3D particles with the highest den-
sities along the ray. Thanks to the PAS, our ProNeRF can
yield a sparse set of accurate sampling distances, denoted as
T = {t1, t2, ..., tNs

}, by which the shading network Fθs is
queried for each point corresponding to the ray distances in
T (along with rd) to obtain ci and σi as

[ci, σi] = Fθs(r(ti), rd). (3)

Furthermore, similar to AdaNeRF, our ProNeRF adjusts the
final sample opacities αi, which allows for fewer-sample
rendering and back-propagation during training. However,
unlike the AdaNeRF that re-scales the sample densities, we
shift and scale the α values in our ProNeRF, yielding α̂:

α̂i = ai(1− e−(σi+bi)(ti+1−ti)), (4)

where ai and bi are estimated by the PAS network as At =
{a1, a2, ..., aNs} and Bt = {b1, b2, ..., bNs}. We then render
the final ray color in our PAS-guided VRE according to

ĉ(r) =
∑Ns

i=1

(∏i−1
j=11− α̂j

)
α̂ici. (5)

3.2 PAS: Projection-Aware Sampling
Similar to previous sampler-based methods, our PAS net-
work in the ProNeRF runs only once per ray, which is a
very efficient operation during both training and testing. As
depicted in Fig. 2, our ProNeRF employs two MLP heads
that map rays into the optimal ray distances T and the cor-
responding shift and scale in density values At and Bt re-
quired in the PAS-guided VRE.



Figure 2: A conceptual illustration of our fast and high-quality projection-aware sampling of neural radiance fields (ProNeRF).
The reference views are available during training and testing. The target view is drawn for illustrative purposes only.

The first step in the PAS of our ProNeRF is to map the
ray’s origin and direction (ro and rd) into a representation
that facilitates the mapping of training rays and interpolation
of unseen rays. Feeding the raw ro and rd into Fθc can mis-
lead to overfitting, as there are a few ray origins in a given
scene (as many as reference views). To tackle this problem,
previous works have proposed to encode rays as 3D points
(TermiNeRF) or as a Plücker coordinate which is the cross-
product ro × rd (LightFields and HyperReel). Motivated by
these works, we combine the Plücker and ray-point embed-
ding into a ‘Plücker ray-point representation’. Including the
specific points in the ray aids in making the input representa-
tion more discriminative, as it incorporates not only the ray
origin but also the range of the ray, while the vanilla Plücker
ray can only represent an infinitely long ray. The embedded
ray rpr is then given by

rpr = [rd, ro + rd ⊙ tnf , (ro + rd ⊙ tnf )× rd] (6)
where tnf is a vector whose Npr elements are evenly spaced
between the scene’s near and far bounds (tn and tf ), ⊙ is
the Hadamard product, and [·, ·] is the concatenation oper-
ation. The ProNeRF processes the encoded ray rpr via Fθc
in the first stage of PAS to yield the coarse sampling dis-
tances T ′ = {t′1, t′2, ..., t′Ns

} along r. Fθc also predicts the
shifts and scales in opacity values At and Bt. Furthermore,
inspired by light-fields, Fθc yields a light-field color output
ĉc which is supervised to approximate the GT color c(r) to
further regularize Fθc and improve the overall learning. The
multiple outputs of Fθc are then given by

[T ′, At, Bt, ĉc] = Fθc(rpr). (7)
While the previous sampler-based methods attempt to

sample radiance fields with a single network such as Fθc , we
propose a coarse-to-fine PAS in ProNeRF. In our ProNeRF,
the second MLP head Fθf is fed with the coarse sampling
points r(t′i) and color-to-ray projections which are obtained
by tracing lines between the estimated coarse 3D ray points
and the camera centers of Nn neighboring views from a pool
of Nt available images, as shown in Fig. 2. The pool of Nt

images in the training phase consists of all training images.
However, it is worth noticing that only a significantly small
number of Nt views is needed for inference. The color-to-
ray projections make ProNeRF projection-aware and enable

Fθf to better understand the detailed geometry in the scenes
as they contain not only image gradient information but also
geometric information that can be implicitly learned for each
point in space. That is, high-density points tend to contain
similarly-valued multi-view color-to-ray projections.

Although previous image-based rendering methods have
proposed to directly exploit projected reference-view-
features onto the shading network, such as the works of T
et al. (2023) and Suhail et al. (2022b), these approaches ne-
cessitate computationally expensive attention mechanisms
and all training views storage for inference, hence increas-
ing the inference latency and memory footprint. On the other
hand, we propose to incorporate color-to-ray projections not
for directly rendering the novel views but for fine-grained
ray sampling of radiance fields. As we learn to sample im-
plicit NeRFs sparsely, our framework provides a superior
trade-off between memory, speed, and quality.

The color-to-ray projections are concatenated with the
Plücker-ray-point-encoded r′pr of coarse ray distances T ′,
which is then fed into Fθf , as shown in Fig. 2. In turn, Fθf

improves T ′ by yielding a set of inter-sampling refinement
weights, denoted as 0 ≤ ∆T ≤ 1. The refined ray distances
T are obtained by the linear interpolation between consec-
utive elements of the expanded set of coarse ray distances
Ṫ = {tn, t′1, t′2, ..., t′Ns

, tf} from T ′, as given by

T =
{

1
2

(
(Ṫi + Ṫi+1) + ∆Ti(Ṫi+2 − Ṫi)

)}Ns

i=1
. (8)

Our inter-sampling residual refinement aids in training sta-
bility by reusing and maintaining the order of the coarse
samples T ′. ∆T is predicted by Fθf as given by

[∆T ,W,M ] = Fθf ([r
′
pr,fp1

,fp2
, ...,fpNs

]), (9)

where fpi = [c1pi
, c2pi

, ..., cNn
pi

] and ckpi
is the kth color-to-

ray projection from the Nn views at 3D point pi = r(t′i).
Note that W and M in Eq. (9) are the auxiliary outputs
of softmax and sigmoid for network regularization, respec-
tively. In contrast with Fθc , Fθf is projection-aware, thus
ĉf is obtained by exploiting the color-to-ray projections in
an approximated version of volumetric rendering (AVR). In
AVR, ckpi

and W ∈ RNs are employed to approximate the



VRE (Eq. 1). The terms
(∏i−1

j=11− αj

)
αi in VRE are ap-

proximated by W while ci is approximated by projected
color ckpi

for the kth view in Nn neighbors. AVR then yields

ckavr =
∑Ns

i=1Wic
k
pi
, (10)

resulting in Nn sub-light-field views. The final light-field
output ĉf is aggregated by M ∈ RNn with ckavr as

ĉf =
∑Nn

k=1Mkc
k
avr (11)

Algorithm 1: Exploration and exploitation end2end training
1: procedure PRONERF TRAINING
2: Init Data, PAS, Fθs , Opts, Optcfs
3: for it = 0 to 7× 105 do
4: Sample random ray r
5: At, Bt, T , ĉc, ĉf ← PAS(r)
6: if 2|it and it < 4×105 then ▷ Exploration pass
7: N+

s ← RandInt(Ns, N)
8: T+ ← Sample(T,N+

s )
9: T+ ← T+ + noise

10: {ci, σi}N
+
s

i=1 ← Fθs(ro + rd ⊙ T+)

11: ĉ(r)← V RE({ci, σi}N
+
s

i=1, T
+) (Eq. 1)

12: loss← |ĉ(r)− c(r)|2
13: Back-propagate and update by Opts
14: else ▷ Exploitation pass
15: {ci, σi}Ns

i=1 ← Fθs(ro + rd ⊙ T )

16: ĉ(r)← V RE({ci, σi}Ns
i=1, At, Bt, T ) (Eq. 5)

17: loss← |ĉ(r)− c(r)|2
18: if it < 4×105 then
19: loss← loss+ |ĉc − c(r)|2 + |ĉf − c(r)|2
20: Back-propagate and update by Optcfs

3.3 Novel Exploration-Exploitation Training
Our training strategy alternates between ray sampling explo-
ration and exploitation as shown in Algorithm 1. As noted
in line(L)-2, we first initialize the dataset (composed of cal-
ibrated multi-views) by extracting the target rays and col-
ors, followed by ProNeRF’s networks’ initialization. We im-
plement two optimizers, one for exploration (Opts) and the
other for exploitation (Optcfs). Opts updates the weights in
Fθs , while Optcfs updates all weights in Fθc , Fθf , Fθs . The
first step in a training cycle is to obtain the PAS outputs (At,
Bt, T , ĉc, ĉf ), as denoted in line 5 of Algorithm 1.

In the exploration pass (Algorithm 1 L-7 to 13), Fθs learns
the scene’s full color and density distributions by randomly
interpolating Ns estimated T distances into N+

s piece-wise
evenly-spaced exploration sample distances T+. For exam-
ple, if the number of estimated ray distances is Ns = 8 and
the exploration samples are randomly set to N+

s = 32, the
distance between each sample in T will be evenly divided
into four bins such that the sample count is 32. Moreover,
we add Gaussian noise to T+ as shown in of Algorithm 1 L-
9, further allowing the Fθs to explore the scene’s full color
and density distributions. We then query Fθs for the N+

s ex-
ploration points to obtain ci and σi in the original VRE (Eq.
1). Finally, Fθs is updated in the exploration pass.

In the exploitation pass, described in Algorithm 1 L-15 to
20, we let the PAS and Fθs be greedy by only querying the
samples corresponding to T and using the PAS-guided VRE
(Eq. 5). Additionally, we provide GT color supervision to the
auxiliary PAS network light-field outputs ĉc and ĉf for the
first 60% of the training iterations. For the remaining 40%,
ProNeRF focuses on the exploitation and disables the auxil-
iary loss as described by Algorithm 1 L-18 and 19. Note that
for rendering a ray color with a few points during exploita-
tion and testing, adjusting αi in Eq. 4 is needed to compen-
sate for the subsampled accumulated transmittance which is
learned for the full ray distribution in the exploration pass.

In summary, during exploration, we approximate the VRE
with Monte Carlo sampling, where a random number of
samples, ranging from Ns to N , are drawn around the es-
timated T . When training under exploitation, we sparsely
sample the target ray r given by T . Furthermore, we only
update Fθs during the exploration pass while using the orig-
inal VRE (Eq. 1). However, in our exploitation pass, we up-
date all MLP heads while using the PAS-guided VRE (Eq.
5). See Section 4 for more implementation details.

3.4 Objective functions
Similar to previous works, we guide ProNeRF to generate
GT colors from the queried ray points with an l2 penalty as

l = 1
Nr

∑
Nr

||ĉ(r)− c(r)||2, (12)
which is averaged over the Nr rays in a batch. In con-
trast with the previous sampler-based networks (TermiN-
eRF, AdaNeRF, DoNeRF, HyperReel), our ProNeRF pre-
dicts additional light-field outputs, which further regularize
learning, and is trained with an auxiliary loss la, as given by
la = 1

Nr

∑
Nr

||ĉc(r)− c(r)||2 + ||ĉf (r)− c(r)||2. (13)
Our total objective loss is lT = l+λla, where λ is 1 for 60%
of the training and then set to 0 afterward.

4 Experiments and Results
We provide extensive experimental results on the LLFF
(Mildenhall et al. 2019) and Blender (Mildenhall et al. 2020)
datasets to show the effectiveness of our method in compari-
son with recent SOTA methods. Also, we present a compre-
hensive ablation study that supports our design choices and
main contributions. More results are shown in Supplemental.

We evaluate the rendering quality of our method by three
widely used metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM) (Wang et al. 2004) and Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al.
2018). When it comes to SSIM, there are two common im-
plementations available, one from Tensorflow (Abadi et al.
2015) (used in the reported metrics from NeRF, MobileN-
eRF, and IBRnet), and another from sci-kit image (van der
Walt et al. 2014) (employed in ENeRF, RSeN, NLF). We
denoted the metrics from Tensorflow and scikit-image as
SSIMt and SSIMs, respectively. Similarly, for LPIPS, we
can choose between two backbone options, namely AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) and VGG (Si-
monyan and Zisserman 2014). We present our SSIM and
LPIPS results across all available choices to ensure a fair and
comprehensive evaluation of our method’s performance.



4.1 Implementation Details
We train our ProNeRF with PyTorch on an NVIDIA A100
GPU using the Adam optimizer with a batch of Nr = 4, 096
randomly sampled rays. The initial learning rate is set to
5 × 10−4 and is exponentially decayed for 700K iterations.
We used TensoRT on a single RTX 3090 GPU with model
weights quantized to half-precision FP16 for testing. We set
the point number in the Plücker ray-point encoding for our
PAS network to 48. We set the maximum number of explo-
ration samples to N = 64. Fθc and Fθf consist of 6 fully-
connected layers with 256 neurons followed by ELU non-
linearities. Finally, we adopt the shading network introduced
in DONeRF, which has 8 layers with 256 neurons.

4.2 Results
Forward-Facing (LLFF). This dataset comprises 8 chal-
lenging real scenes with 20 to 64 front-facing handheld cap-
tured views. We conduct experiments on 756 × 1008 im-
ages to compare with previous methods, holding out every
8th image for evaluation. We also provide the quantitative
results on 378 × 504 images for a fair comparison to the
methods evaluated on the lower resolution.

Our quantitative and qualitative results, respectively
shown in Table 1 and Fig. 3, demonstrate the superiority of
our ProNeRF over the implicit NeRF and the previous ex-
plicit methods, e.g, TensoRF and K-Planes. Our model with
8 samples, ProNeRF-8, is the first sampler-based method
that outperforms the vanilla NeRF by 0.28dB PSNR while
being more than 20× faster. Furthermore, our ProNeRF-
12 yields rendered images with 0.65dB higher PSNR while
being about 15× faster than vanilla NeRF. Our improve-
ments are reflected in the superior visual quality of the ren-
dered images, as shown in Fig. 3. On the lower resolution,
ProNeRF-8 outperforms the second-best R2L by 0.28dB and
the latest sampler-based HypeRreel by 0.58dB with faster
rendering. In Table 1, compared to the explicit grid-based
methods of INGP, Plenoxels and MobileNeRF, our ProNeRF
shows a good trade-off between memory, speed, and quality.

We also present the quantitative results of the auxiliary
PAS light field outputs in Table 1, denoted as PAS-8 cf for
both the regression (Reg) and AVR cases. We observed no
difference in the final color output when Reg or AVR were
used in ProNeRF-8. However, PAS-8 cf (AVR) yields con-
siderably better metrics than its Reg counterpart.

Inspired by the higher FPS from PAS-8 cf (AVR), we also
explored pruning ProNeRF by running the Fθs only for the
“complex rays”. We achieve ProNeRF-8 prune by training
a complementary MLP head Fθm which has the same com-
plexity as Fθc and predicts the error between ĉf and ĉ out-
puts. When the error is low, we render the ray by PAS-8 cf
(AVR); otherwise, we subsequently run the shader network
Fθs . While pruning requires an additional 3.3 MB in mem-
ory, the pruned ProNeRF-8 is 23% faster than ProNeRF-8
with a small PSNR drop and negligible SSIM and LPIPS
degradations, as shown in Table 1. Note that other previous
sampler-based methods cannot be pruned similarly, as they
do not incorporate the auxiliary light-filed output. Training
pruning is fast (5min). See more details in Supplemental.

Res. Methods PSNR SSIMt/s LPIPSvgg/alex FPS Mem(MB)
NeRF (ECCV20) 26.50 0.811 / - 0.250 / - 0.3 3.8
INGP (SIGGRAPH22) 25.60 0.758 / - 0.267 / - 7.3 64.0

756

Plenoxels (CVPR22) 26.30 0.839 / - 0.210 / - 9.1 3629.8

×

MipNeRF360 (CVPR22) 26.86 0.858 / - - / 0.128 0.1 8.2

1008

TensoRF (ECCV22) 26.73 0.839 / - 0.204 / 0.124 1.1 179.7
K-Planes (CVPR23) 26.92 0.847 / - 0.182 / - 0.7 214
SNeRG (ICCV21) 25.63 0.818 / - 0.183 / - 50.7 337.3
ENeRF (SIGGRAPHA22) 24.89 - / 0.865 0.159 / - 8.9 10.7
AdaNeRF (ECCV22) 25.70 - / - - / - 7.7 4.1
Hyperreel (CVPR23) 26.20 - / - - / - 4.0 58.8
MobileNeRF (CVPR23) 25.91 0.825 / - 0.183 / - 348 201.5
PAS-8 cf (Reg) (Ours) 24.86 0.787 / 0.855 0.236 / 0.150 29.4 2.7
PAS-8 cf (AVR) (Ours) 25.15 0.793 / 0.860 0.234 / 0.146 25.6 5.0
ProNeRF-8 Prune (Ours) 26.54 0.825 / 0.883 0.219 / 0.120 8.5 6.8
ProNeRF-8 (Ours) 26.78 0.825 / 0.884 0.228 / 0.119 6.9 3.5
ProNeRF-12 (Ours) 27.15 0.838 / 0.894 0.217 / 0.109 4.4 3.5
FastNeRF (ICCV21) 26.04 - / 0.856 - / 0.085 700 4100

378

EfficientNeRF (CVPR22) 27.39 - / 0.912 - / 0.082 219 2800

×
RSEN (CVPR22) 27.45 - / 0.905 - / 0.060 0.34 5.4

504

R2L (ECCV22) 27.79 - / - - / 0.097 5.6 22.6
Hyperreel (CVPR23) 27.50 - / - - / - 4.0 58.8
ProNeRF-8 (Ours) 28.08 0.879 / 0.916 0.129 / 0.060 6.9 3.5
ProNeRF-12 (Ours) 28.33 0.885 / 0.920 0.129 / 0.058 4.4 3.5

Table 1: Results on LLFF. Metrics are the lower the better
and the higher the better . (-) metrics are not provided in the
original literature.

Methods PSNR SSIM LPIPS
No exploration pass 24.00 0.754 0.299
No exploitation pass 24.31 0.779 0.278
No σ shift (no Bt) 24.2 0.773 0.264
No aux. loss (no la) 24.26 0.766 0.296
No α̂ (no At, Bt) 24.69 0.785 0.260
No Plücker ray-point 24.72 0.782 0.257
No color-to-ray proj 24.83 0.789 0.245
ProNeRF-12 Nn=4 25.17 0.809 0.244

Avg Nt PSNR SSIM LPIPS Mem(MB)
4.00 27.15 0.838 0.217 3.5
8.00 27.16 0.838 0.216 4.2

12.00 27.15 0.837 0.217 4.9
32.75 27.15 0.838 0.216 8.4

Table 2: ProNeRF ablations on LLFF. (Left) Network de-
signs on Fern. (Right) Ablation of # of available ref. views.

360 Blender. This is an object-centric 360-captured syn-
thetic dataset for which our ProNeRF-32 achieves a reason-
ably good performance of 31.92 dB PSNR, 3.2 FPS (after
pruning) and 6.3 MB Mem. It should be also noted that
the ProNeRF-32 outperforms NeRF, SNeRG, Plenoctree,
and Plenoxels while still displaying a favorable performance
profiling. See Supplemental for detailed results.

4.3 Ablation Studies
We ablate our ProNeRF on the LLFF’s Fern scene in Table 2
(left). We first show that infusing exploration and exploita-
tion into our training strategy is critical for high-quality
neural rendering. As shown in the top section of Table 2
(left), exploration- or exploitation-only leads to sub-optimal
results as neither the shading network is allowed to learn the
full scene distributions nor the PAS network is made to focus
on the regions with the highest densities.

Next, we explore our network design by ablating each
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Figure 3: Qualitative comparisons for the LLFF (Mildenhall et al. 2019) dataset. Zoom in for better visualization.

Figure 4: Cameras distribution on the LLFF’s Fortress scene.
Green cameras denote available training views. Red cameras
denote selected and fixed subset of Nt frames for projection.

design choice. As noted in Table 2 (left), removing α scales
(At) and shifts (Bt) severely impact the rendering quality.
We also observed that the auxiliary loss (la) is critical to
properly train our sampler since its removal causes almost
1dB drop in PSNR. The importance of our Plücker ray-point
encoding is shown in Table 2 (left), having an impact of al-
most 0.5dB PSNR drop when disabled. Finally, we show that
the color-to-ray projection in the PAS of our ProNeRF is the
key feature for high-quality rendering.

Memory footprint consistency. This experiment proves
ProNeRF yields a consistent usage of memory footprint. As
mentioned in Section 2, light-fields and image-based ren-
dering methods, which rely on multi-view color projections,
typically require large storage for all available training views
for rendering a novel view. This is because they utilize the
nearest reference views to the target pose from the entire
pool of available images. In contrast, our ProNeRF takes a
distinct approach by consistently selecting a fixed subset of
Nt reference views when rendering any novel viewpoint in
the inference stage. This is possible because (i) we randomly
select any Nn neighboring views (from the entire training

pool) during training; and (ii) our final rendered color is ob-
tained by sparsely querying a radiance field, not by directly
processing projected features/colors. As a result, our frame-
work yields a consistent memory footprint for storing ref-
erence views, which is advantageous for efficient hardware
design. To select the Nt views, we leverage the sparse point
cloud reconstructed from COLMAP and a greedy algorithm
to identify the optimal combination of potential frames. As
shown in Fig. 4, the Nt views become a subset across all
available training images that comprehensively cover the tar-
get scene (see details in Supplemental). As shown in Table
2 (right), we set the number of neighbors in PAS to Nn = 4
and adjust Nt to 4, 8, 12, and all training views (32.75).
Please note our ProNeRF’s rendering quality remains stable
while modulating Nt, attesting to the stability and robust-
ness of our approach across varying configurations.

4.4 Limitations
While not technically constrained to forward-facing scenes
(such as NeX) and yielding better metrics than vanilla NeRF
and several other works, our method is behind grid-based
explicit models such as INGP for the Blender dataset. The
methods like INGP contain data structures that better ac-
commodate these kinds of scenes. Our method requires more
samples for this data type, evidencing that our method is
more efficient and shines on forward-facing datasets.

5 Conclusions
Our ProNeRF, a sampler-based neural rendering method,
significantly outperforms the vanilla NeRF quantitatively
and qualitatively for the first time. It also outperforms the
existing explicit voxel/grid-based methods by large mar-
gins while preserving a small memory footprint and fast
inference. Furthermore, we showed that our exploration
and exploitation training is crucial for learning high-quality
rendering. Future research might extend our ProNeRF for
dynamic-scenes and cross-scene generalization.



Acknowledgements
This work was supported by IITP grant funded by the Korea
government (MSIT) (No. RS2022-00144444, Deep Learn-
ing Based Visual Representational Learning and Rendering
of Static and Dynamic Scenes).

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Leven-
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